Un orage, de l'ancien français ore qui signifiait vent, est une perturbation atmosphérique d'origine convective associée à un type de nuage particulier : le cumulonimbus. Ce dernier est à forte extension verticale, il engendre des pluies fortes à diluviennes, des décharges électriques de foudre accompagnées de tonnerre. Dans des cas extrêmes, l'orage peut produire des chutes de grêle, des vents très violents et, rarement des tornades.
************************************
Comme dans le cas des averses, les orages se forment dans une masse d'air instable lorsqu'il y a une réserve importante de chaleur et d'humidité au niveau du sol et d'air plus sec et froid en altitude. Une parcelle d'air plus chaude que l'environnement entre en convection. Tant qu'elle n'est pas saturée, sa température change selon le taux adiabatique sec. À partir de la saturation, la vapeur d'eau contenue dans la parcelle d'air condense selon les lois de la thermodynamique ce qui relâche de la chaleur latente et son changement de température avec la pression est alors celui qu'on appelle le taux pseudo-adiabatique humide. L'accélération ascensionnelle se poursuit jusqu'à ce que la parcelle arrive à un niveau où sa température égale celle de l'air environnant. Ensuite, elle se met à décélérer et le sommet du nuage est atteint quand la particule atteint une vitesse nulle.
L'Énergie Potentielle de Convection Disponible (EPCD) pour ce type de nuages est plus grande que pour une averse et permet de développer des sommets de nuages qui atteindront une plus grande altitude. Ceci est important car les gouttes qui s'élèvent dans le courant ascendant perdent des électrons par collision comme dans un accélérateur de Van de Graff. Un plus haut sommet permet d'atteindre une température inférieure à -20 °C nécessaire pour donner un grand nombre de cristaux de glace. Ces derniers sont de meilleurs producteurs et transporteurs de charge ce qui permet une différence de potentiel suffisante entre la base et le sommet du nuage pour dépasser le seuil de claquage de l'air et donner de la foudre.
L'instabilité potentielle de l'air n'est pas le seul critère, il faut généralement un déclencheur. Par exemple, le passage d'un front froid ou le réchauffement diurne. Un tel déclencheur peut agir à la surface ou en altitude ce qui fait que les orages peuvent se développer près du sol ou être basés aux niveaux moyens de l'atmosphère. Les orages peuvent donc se produire en toute saison pourvu que les conditions soient remplies. Hormis les régions équatoriales, la période la plus active va de la fin du printemps au début de l'automne car c'est à ce moment que l'atmosphère est la plus chaude et humide.
L'orage unicellulaire est caractérisé par une faible énergie (EPCD de 500 à 1000 J/Kg) avec peu ou pas de changement des vents avec l'altitude. Donc le cycle de vie d’environ 30 à 60 minutes de ces orages est caractérisé par un courant ascendant plus ou moins fort et vertical. Au départ, nous sommes en présence de cumulus mediocris qui fusionnent entre eux. Ils se transforment ensuite en cumulus bourgeonnants (ou cumulus congestus) avec début de précipitations en leur sein. Lorsque des cristaux de glace se forment au sommet du nuage, ces congestus deviennent par définition des cumulonimbus calvus. Apparaissent alors les premiers phénomènes électriques qui caractérisent les orages.
Au stade mature, une enclume se forme au sommet du nuage qui prend alors le nom de cumulonimbus capillatus. Cette enclume est provoquée par l'étalement du nuage suite à l'inversion de température à la tropopause et à la présence de forts vents à cette altitude. Cependant, le cœur de précipitations dans le nuage, qui se trouve à une grande altitude, commence à être trop pesant pour que le courant ascendant puisse le soutenir. La pluie mêlée de petits grêlons commence alors à redescendre vers le sol, ce qui provoquera bientôt la dissipation.
En effet, cette précipitation descend dans le courant ascendant et s'évapore partiellement en refroidissant l'air qui l'entoure. Ce dernier devient alors plus froid que l'environnement, et par poussée négative d'Archimède, accélère vers le sol. Graduellement le courant descendant s'intensifie et supplante le courant ascendant. Après la pluie, l'orage unicellulaire se dissipe rapidement créant une zone plus fraîche autour de lui.
Ce type d'orages est le plus fréquent. Il peut être associé à une forte averse et des rafales de vent. Les pluies ne sont presque jamais torrentielles et les chutes de gros grêlons sont rarissimes. Dans les régions arides du globe, l'évaporation peut être telle que la pluie n'atteint pas le sol et forme de la virga sous le cumulonimbus.
Lorsque la force et la direction des vents augmentent avec l’altitude de façon linéaire, le courant ascendant de convection n’est plus à la même position que le courant descendant avec la précipitation. Ceci produit un front de rafale qui s’éloigne en arc du cœur de précipitations et repousse la zone d’ascension. Un surplomb de précipitation se forme donc généralement dans le quadrant sud-ouest de la cellule mère dans l’hémisphère nord alors que les vents dominants de surface viennent de cette direction. Comme le front de rafale se dissocie avec le temps de la cellule initiale en formant des cellules filles, le multi-cellulaire forme donc une ligne d'orages à différents stades de développement.
La structure radar de ce type d’orage est caractérisée par des surplombs sur la partie sud-ouest d’une ligne de fort échos et ces surplombs semblent se déplacer dans cette direction alors que la ligne se déplace à 30° et 70 % de la vitesse des vents dans la couche où se produisent les orages.
En général, l'EPCD est moyen dans ce type d'orage, soit entre 800 et 1 500 J/Kg. Selon l'énergie et l'humidité disponibles, ce type d'orage peut donner des rafales de vents violentes, des pluies diluviennes et très rarement des tornades.
source:wikipedia